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The authors theoretically investigated the electron mobility in the nanometer thickness
AlN/GaN/AlN heterostructures limited by the polar optical and confined acoustic phonons. The
proposed model accurately takes into account dispersion of the optical and acoustic phonons in such
heterostructures as well as inelasticity of the electron scattering on both optical and acoustic
phonons. It has been shown that the intersubband electronic transitions play an important role in
limiting the electron mobility when the energy separation between one of the size-quantized excited
electron subbands and the Fermi energy becomes comparable to the optical or confined acoustic
phonon energy. The latter results in the nonmonotonic oscillatory dependence of the electron
mobility on the thickness of the GaN conduction channel layer. The predicted effect is observable
at room temperature and over a wide range of carrier densities. The described mechanism can be
used for fine tuning the confined electron and phonon states in the nanoscale heterostructures made
of different material systems in order to achieve performance enhancement of the nanoscale
electronic devices. © 2007 American Institute of Physics. �DOI: 10.1063/1.2777105�

I. INTRODUCTION

The optical and acoustic phonons play a major role in
limiting the electron mobility near the room temperature.1

Depending on the type of a semiconductor, e.g., nonpolar or
polar, and temperature, the relative contribution of the opti-
cal and acoustic phonons to the electron-phonon scattering
can differ over a wide range. The electron-phonon scattering
rates can undergo strong modification in the hetero- and
nanostructures with the size-quantized electronic states. Lee
and Vassell2 have shown that the low-field drift electron mo-
bility in the thin quantum wells or narrow conduction chan-
nels decreases below the bulk limit due to the electron state
size quantization. At the same time, there exists an interme-
diate range of the quantum well thicknesses where the carrier
mobility is enhanced. Their calculation was carried out in the
relaxation time approximation for a single electron band and
bulk acoustic and optical phonons. The methods of enhanc-
ing the carrier mobility via tuning the size-quantized electron
states became an important part of the electron band–
structure engineering.1

More recently, Fonoberov and Balandin3 found that the
low-field room temperature electron mobility in silicon nano-
wires with the barriers made of the “acoustically hard” ma-
terials can be increased via partial suppression of the defor-
mation potential electron–acoustic phonon scattering. The

results were obtained for the nanowires with the size-
quantized electron states and confined acoustic phonon dis-
persion, which was modified due to the elastic mismatch at
the interface between the nanowire and the barrier materials.
In another material system the low-temperature electron mo-
bility was found to undergo changes due to the mismatch
between the acoustic phonon density of states �PDOS� in the
dissimilar nanowire and barrier materials.4 The methods for
the electron mobility enhancement via the controlled modi-
fication of the phonon dispersion became a part of what is
now referred to as phonon engineering.5

It was previously shown both theoretically and experi-
mentally that the carrier mobility can manifest a nonmono-
tonic dependence on the thickness of the conduction
channel.6–11 The theoretical treatment of Inoue and
Matsuno,6 which analyzed the mobility dependence on the
channel thickness in AlGaAs/GaAs/AlGaAs system, was
based on the system of two Boltzman equations and included
the major mechanisms of the electron scattering, e.g., charge
impurities, lattice defects, and phonons. The electron scatter-
ing on the acoustic phonons was approximated as an elastic
process, while the nonelasticity of the electron scattering on
optical phonons was explicitly taken into account. Tsuchia
and Ando7 have considered a similar problem for
AlAs/GaAs/AlAs material system but introduced a more
complicated confining potential profile.

In this paper, we examine the dependence of the electron
mobility on the conduction channel thickness in
AlN/GaN/AlN heterostructure using a rigorous theoretical
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approach. Specifically, our model takes into account the �i�
multiple size-quantized electron subbands, �ii� dispersion of
the optical and acoustic phonons in such structure, as well as
�iii� inelasticity of electron scattering on both optical and
acoustic phonons. It is well known that GaN and AlN can
form both wurtzite and zinc-blende crystal structure. The
electron mobility in wurtzite AlN/GaN/AlN structures is
strongly affected by the built-in electric field due to the spon-
taneous and piezoelectric polarization.12,13 To separate the
effect due to the built-in field from the nanoscale size quan-
tization and phonon dispersion effects, we considered the
zinc-blende AlN/GaN/AlN system. The AlN/GaN/AlN
heterostructures present a particularly interesting case for the
study of the mobility dependence on the channel thickness
due to the high energy of the optical phonons in these mate-
rials �66–100 meV range�, which allows one to elucidate the
origin of the nonmonotonic dependence.

The remainder of the paper is organized as follows. In
the next section, we describe the theoretical model based on
the system of the Boltzman kinetic equations and the calcu-
lation procedure. Section III presents our results and com-
parison with the available experimental data. The conclu-
sions are given in Sec. IV.

II. THEORETICAL MODEL AND CALCULATION
PROCEDURE

For many technologically important semiconductors the
energies of the optical phonons are similar to the energies of
the acoustic phonons, which correspond to the Debye cutoff
frequency. For example, in GaAs, the energy of the optical
phonon is ��opt=36 meV, while the Debye acoustic phonon
energy is ��ac=30 meV. The optical phonon energies in the
zinc-blende and wurtzite GaN are 87 and 91 meV, respec-
tively. The energies of the acoustic phonons, which corre-
spond to the Debye cutoff frequencies, are around 50 meV.14

Thus, it is important to take into account the inelasticity of
the electron interaction with both optical and acoustic
phonons in the calculation of the phonon-limited mobility.
The phonon dispersion is also explicitly taken into account in
our theoretical model and calculation procedure. The latter is
particularly important for the acoustic phonon dispersion,
which undergoes modification in the nanometer thickness
heterostructures.

The nonmonotonic dependence of the electron mobility
on the channel thickness d, i.e., oscillatory behavior, can
appear owing to various reasons. One can envision a “qua-
siresonant” condition when the electron scatters from the
populated low-energy subband into the unoccupied higher-
energy subband with the absorption of a phonon with suit-
able energy and momentum. In this case, the Fermi energy is
considerably lower than the energy of the higher subband but
the energy of the phonon is enough for the electron transition
to take place. The elastic scattering processes do not contrib-
ute to such scattering transitions. Completely different situa-
tion develops when the Fermi level is close to the energy of
one of the higher-energy subbands, which is partially popu-
lated. The latter may happen when the channel thickness d
increases �while still in the size-quantized limit� leading to
the small energy separations between the subbands. The elas-

tic �or quasielastic� electron transitions can contribute to the
electron scattering in this case. The physical mechanism be-
hind the observed mobility maxima in GaAs-based
heterostructures6 was likely related to the Fermi energy
alignment with the first excited subband and contribution of
the elastic scattering processes.

The procedure for calculating the electron mobility in
semiconductor nano- or heterostructures is different, depend-
ing on the conduction channel thickness. If the channel layer
is relatively thick one can use the “bulk” approach assuming
that there are no spatial confinement effects for either elec-
trons or phonons and neglect the interaction between the
electrons and interface phonons. Such approach has been
used in the calculation of the electron mobility in the
modulation-doped structures and some device
heterostructures.1 When the channel is very thin �on the order
of the electron de Broglie wavelength or smaller� the elec-
tron size quantization has to be taken into account. Com-
monly, in such cases, it was assumed that only the ground
electron subband is occupied and the intersubband electron
transitions were omitted.15,16 However, in heterostructures
with the nanometer scale thickness of the conduction chan-
nels �d�5 nm for zinc-blende AlN/GaN/AlN heterostruc-
tures�, the energy separation between the quantized electron
levels ��n,n−1=�n

0−�n−1
0 ��n

0 is the energy of nth quantized
level� is comparable to the phonon energy. For this reason
the intersubband electron transitions should be taken into
consideration. One should note here that this case is the most
relevant to the realistic electronic devices structures made of
AlN/GaN/AlN.

We calculate the electron mobility for the zinc-blende
AlN/GaN/AlN heterostructures with the flat potential in the
bottom of the conduction band �see inset of Fig. 1 for the
heterostructure geometry�. For the GaN conduction channels
with the thicknesses d=2–22 nm the three lowest electron
subbands participate in the intrasubband electron scattering

FIG. 1. Electron energy levels and wave functions for the ground �n=1� and
excited �n=2 and 3� subbands in the zinc-blende AlN/GaN/AlN hetero-
structure with the dimensions of 3 nm/15 nm/3 nm. The inset shows the
heterostructure geometry and the coordinate system.
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transitions. The electron relaxation times can be found from
the solution of a system of the integral-differential Boltzman
kinetic equations written as,13,17

�
p�,m=±1,

�,n�=1,2,3

�W�n,p → n�,p��
1 − f0��n + m����q��

1 − f0��n�

���n�p� − �n��p��
pp�

p2 	
 = 1, �1�

where W��→���= �2	 /���
��Ĥe−ph���� �2��E�−E��� is the
probability of a transition of the electron-phonon system
from the state � with the energy E� to the state �� with the
energy E��, f0���= �exp���−�F� /kBT�+1�−1 is the Fermi-
Dirac equilibrium distribution function, T is the absolute
temperature, kB is Boltzman’s constant, � is the electron en-
ergy, q is the phonon wave number, p and p� are the electron
momenta in the initial and final states, respectively, � is the
quantum number of the polar optical �interface or confined�
or acoustic phonon modes, Ĥe−ph is the Hamiltonian of the
electron interaction with the optical or acoustic phonon nor-
mal modes, �1��� is the kinetic relaxation time of an electron
with the energy � in the ground subband, which includes the
transitions �1← →1�, �1→2�, and �1→3�, �2��� is the ki-
netic relaxation time of an electron in the second subband,
which includes the transitions �2→1�, �2← →2�, and �2
→3�, and �3��� is the electron kinetic relaxation time in the
third subband, which includes the transitions �3→1�, �3
→2�, and �3← →3�, and the indices n=1, 2, and 3. The
notation �1← →1� means transitions within the first electron
subband �n=1 and n�=1�; the notation �1→2� means transi-
tions from the first to the second electron subband �n=1 and
n�=2�; the rest of the notations are analogous.

The calculation of the electron mobility through the ki-
netic relaxation times, determined from Eq. �1�, is more ac-
curate than the conventionally used relaxation time
approximation.1 After the kinetic relaxation times were de-
termined, we calculated the electron mobility by extending
the standard formalism18 to include the intersubband and in-
trasubband transitions in the excited subbands �n=n�=2,3�,
which led to the expression


�T� =
e

kBT

�
n=1

3
1

m̄
�

0

�

��n���f0����1 − f0����d�

�
n=1

3 �
0

�

f0��n
0 + ��d�

, �2�

where e is the electron charge, and m̄n is the effective elec-
tron mass averaged with the electron wave functions for the
nth energy level calculated by taking into account the elec-
tron penetration in the barrier layers.19 The averaging proce-
dure is needed in order to account for the finite wave func-
tion penetration to the barriers and the difference in the
electron effective masses in the channel layer and the barri-
ers.

The evaluation of the transition matrix elements in Eq.
�1� requires the knowledge of the size-quantized electron
wave functions for the heterostructure potential with the fi-

nite barrier height. We obtained the electron wave functions
from the numerical solutions of the Schrödinger equation.
Figure 1 shows the electron wave functions �n�z� and quan-
tized energies �n

0 for the ground �n=1� and two excited �n
=2 and 3� electron subbands in the AlN/GaN/AlN hetero-
structure. The electron in the ground state subband strongly
interacts with the confined optical phonons and weakly inter-
acts with the interface optical phonons since the electron is
localized in the center of the GaN channel. The intrasubband
transitions �1← →1�, �2← →2�, and �3← →3� and the in-
tersubband transitions �1← →3� are governed by the elec-
tron interactions with the even-number phonon modes, while
the intersubband transitions �1← →2� are mediated by the
odd-number phonon modes. The latter follows from the sym-
metry of the electron wave functions and the phonon vibra-
tion modes. In the electron ground state and the second ex-
cited state the wave functions are antisymmetric with respect
to the reflection from the horizontal plane in the center of the
channel. The matrix elements of the electron-phonon inter-
action are nonzero when the product of the complex conju-
gated wave functions of the initial and final electron states
has the same symmetry as the phonon mode, which induces
the transition.

While the energies of the optical phonons in
AlN/GaN/AlN heterostructures can be taken from literature,
one needs to determine the highly dispersive confined acous-
tic phonon energies for the given heterostructure dimensions
and boundary conditions. We accomplish this task by solving
the equation of motion for the elastic vibrations in the aniso-
tropic medium, which is written as

�
�2Um

�t2 =
��mi

�xi
, �3�

where U�U1 ,U2 ,U3� is the displacement vector, � is the
mass density of the material, �mi is the elastic stress tensor
given by �mi=cmikjUkj, and Ukj =1/2��Uk /�xj +�Uj /�xk� is
the strain tensor. The details of the solution and simulation
procedure for obtaining the confined acoustic phonon modes
in three-layered heterostructures were reported by us
elsewhere.20

III. RESULTS AND DISCUSSION

After the size-quantized electron states were found, we
calculated the energy separation between the confined states
and the Fermi level as a function of the conduction channel
thickness. The Fermi level position is determined by the se-
lected electron density. The energy separation �nF�d ,Ns�
=�n

0−�F for the electron subbands n=2 and 3 is shown as a
function of the channel thickness d in Fig. 2. The maximum
���max�110 meV� and minimum ���min�66 meV� ener-
gies of the interface and confined optical phonons in the
considered heterostructures are indicated in Fig. 2 with the
straight horizontal lines. The material parameters used in our
calculation were taken from Refs. 21–23 �see Table I�. The
intersections of �nF�d ,Ns� curves with the maximum and
minimum phonon energies ��max,min, given by the expres-
sions �nF�dn

0�upper, lower� ,Ns�−��max,min=0, are marked
with the circles, dn

0�u� are the channel thicknesses when the
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upper horizontal line E=��max intersects with �nF curves,
and dn

0�l� are the channel thicknesses when the lower hori-
zontal line E=��min intersects with �nF curves �here u de-
notes “upper” while l denotes “lower”�. As it will become
clear from the following discussion, these intersections es-
tablish approximately the values of the channel thickness
when the electron mobility reaches its maximum values for
different carrier densities.

Figures 3�a� and 3�b� present the mobility dependence
on the channel thickness d for several electron sheet densities
Ns. The results are shown for the temperature T=300 K. The
solid, dashed, and dashed-dotted lines in Fig. 3�a� correspond
to the electron mobility calculated by taking into account
three �n=1, 2, and 3�, two �n=1 and 2�, and one �n=1�
electron subbands, respectively. The electron mobility calcu-
lated by including only the intrasubband transitions �1←
→1� increases monotonically with the increasing channel
thickness d. This dependence agrees with the result obtained
by Anderson et al.16 The monotonic increase in the mobility
is explained by the fact that the density of the size-quantized
electron wave function ��n�z ,d��2 decreases with the increas-
ing d, which leads to the reduction of the matrix elements for
the electron—optical phonon interaction. In addition, the in-
teraction between the electron and interface optical phonons
also weakens with the increasing thickness of the GaN chan-
nel layer. Obviously, the one-subband model calculation can
only be considered valid for very thin channels �d
5 nm for
the given structure� when the subband separation is large
�more than a few kBT�.

The electron scattering with the optical phonon accom-
panied by the optical phonon absorption and electron transi-
tion to the excited subbands starts when the phonon energy is
somewhat smaller than the energy difference �nF�d ,Ns�, i.e.,
already at d
dn

0�u ,Ns�, owing to the partial populating of
the electron states above the Fermi level. The onset of the
intersubband transitions limits the mobility increase even for
d�dn

0�u ,Ns� when the relatively small part of the electrons
undergoes the intersubband transitions. Figure 3�b� shows
the electron mobility as a function of the channel thickness
for several values of the electron concentration. One can see
that the mobility attains its maximum value at d�Ns=1013

cm−2�=3.8 nm
d2
0�u ,Ns=1013 cm−2�=4.2 nm, d�Ns=5�1012

cm−2�=4.8 nm
d2
0�u ,Ns=5�1012 cm−2�=5.2 nm, and d�Ns

=1012 cm2�=5.5 nm
d2
0�u ,Ns=5�1012 cm−2�=7.1 nm. For

the lower electron concentrations �Ns=5�1012 and
1012 cm−2�, the onset of the intersubband electron transitions
appears at the larger thickness d due to the lager values of
�nF�d ,Ns�.

The intrasubband transitions within the first excited sub-
band actively participate in the electron scattering processes
and suppress the mobility oscillations. When d approaches
d2

0�l ,Ns� all phonon modes became involved in the electron
scattering. At this point, the scattering intensity saturates, and
the mobility reaches its minimum value at d
d2

0�l ,Ns�. The
electron transitions to the second excited subband n=3 start
when the thickness d is still smaller than the critical value

FIG. 2. Subband energy separation from the Fermi level �nF�d ,Ns�=�n
0

−�F as a function of the conduction channel thickness in AlN/GaN/AlN
heterostructure. The results are shown for the excited subbands with n=2
and 3. The maximum and minimum energies of the optical phonons are
shown with the straight horizontal lines.

TABLE I. Material parameters for zinc-blende GaN and AlN.

Material parameters GaN AlN

�LO �cm−1� 748a 916b

�TO �cm−1� 562a 673b

C11 �GPa� 293c 304c

C12 �GPa� 159c 160c

C44 �GPa� 155c 193c

aReference 21.
bReference 22.
cReference 23.

FIG. 3. Room temperature electron mobility limited by the optical and
confined acoustic phonons as a function of the conduction channel thickness
for �a� different number of electron subband included in the model and �b�
different values of the electron sheet concentration.
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determined by the intersection in Fig. 1, i.e., d
d3
0�u ,Ns�.

For the electron concentration ns=1012 cm−2 these transitions
appear at d
9 nm
d3

0�u ,Ns=1012 cm−2�=13 nm. The
slopes of the �3F curves at the points of their intersection
with the horizontal “phonon” lines at d=d3

0�u ,Ns� are smaller
than the slopes of the �2F curves at the points of their inter-
section at d=d2

0�u ,Ns�. This means that the second maximum
and second minimum of the mobility curves are separated by
the wider thickness d interval than that for the first ones. The
difference between the maximum and minimum mobility
values for the second oscillation 
max−
min is much smaller
than the difference 
max−
min for the first oscillation,
i.e., ��
max−
min� /
min�n=2=0.3 and ��
max−
min� /
min�n=3

=0.027 for Ns=1012 cm−2. The latter is explained by the par-
ticipation of the ground and first excited subbands in the
intrasubband relaxation processes.

As one can also see in Fig. 3�a� that for the small d when
�nF�d�a��� and the intersubband transitions are absent, the
solid, dashed, and dashed-dotted mobility curves coincide.
The mobility dependence on the channel thickness 
�d�, ob-
tained by taking into consideration the excited higher-energy
subbands, manifests the oscillatory behavior governed by the
onset of the intersubband electron transitions with the ab-
sorption of an optical phonon. Since the intensive intrasub-
band transitions suppress the mobility oscillations, the mo-
bility oscillations are stronger for the heterostructures with
the low electron densities and intermediate values of the
channel thickness when the excited electron levels are not
occupied.

One should note here that the absolute value of the mo-
bility calculated using the relaxation time approximation �in-
stead of the kinetic relaxation time as in our model �Eqs. �1�
and �2�� is usually smaller. In the relaxation time
approximation9–11,24,25 the electron scattering back to the ini-
tial states is not taken into account. To verify our approach,
we calculated the electron mobility using the conventional
relaxation time approximation for the electron density Ns

=1013 cm−2. The obtained result was 20%–25% smaller than
the value calculated using the kinetic relaxation time ap-
proximation, which is shown in Fig. 3�a� with the solid line.
In Fig. 4, we show the mobility as a function of the channel

thickness calculated with the two values of the volumetric
electron concentrations, Nv=1018 and 1019 cm−3, and two
different temperatures. The values of the channel thickness d,
which correspond to the maxima and minima on the mobility
curves, as well as the amplitudes of the mobility oscillations
are similar to the results obtained for the constant sheet elec-
tron concentration Ns, shown in Figs. 3�a� and 3�b�.

The dependence of the electron mobility on the external
perpendicular electric field applied to AlN barriers is pre-
sented in Fig. 5. The results are shown for two values of the
sheet electron concentration. The orientation of the field is
selected to reproduce the effect of the gate bias in the con-
ventional transistor structure. The electric field creates the
triangular potential well in the conduction channel with the
quantized electron energy levels and further localized the
electron wave functions. The effect of the electric field is
analogous to reducing the thickness of the conduction chan-
nel. However, the energy separation of the electron levels is
different. The energy of the first excited electron level �2 in
the flatband potential is larger than in the triangular potential,
which has the same energy �1 of the ground state electron
level. The mobility curves obtained in the one-subband and
multisubband approaches coincide for the large electric fields
due to the fact that only the ground electron quantized level
is occupied. The energy separation between the electron sub-
bands reduces with the decreasing electric field, which leads
to the onset of the intersubband transitions and the mobility
reduction. The wide maximum in the mobility curve for the
low electron density �Ns=1012 cm−2� is explained by the
strong influence of the intrasubband transitions.

Our discussion so far was limited to the effect of the
optical phonons on the electron mobility. At lower tempera-
ture the confined acoustic phonons can manifest themselves
through the appearance of peaks or bulges in the mobility-
channel thickness dependences. We calculated the confined
acoustic phonon dispersion in the given structure by solving
Eq. �3� using the method described by us in details
elsewhere.20 The dispersion of a few lowest confined acous-

FIG. 4. Room temperature electron mobility limited by the optical and
confined acoustic phonons as a function of the conduction channel thickness
for two different values of temperature and two values of the electron volu-
metric concentration.

FIG. 5. Electron mobility limited by the optical and confined acoustic
phonons as a function of the electric field intensity shown for two different
values of the electron sheet density. The electric field is assumed to be
perpendicular to the AlN/GaN/AlN heterostructure layers. The solid,
dashed, and dotted curves correspond to the mobility calculated by taking
into account all three subbands, two subbands, and the ground state subband
only.
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tic phonon modes of the symmetric �SA� vibrational polar-
ization in AlN/GaN/AlN heterostructure is shown in Fig. 6.
Here we kept the nomenclature for the confined phonon
mode proposed in Ref. 20. In the generic slab �without the
barriers� SA modes correspond to and referred to as the di-
latational phonon modes. One can see from Fig. 6 that the
confined acoustic phonons have many branches and cutoff
frequencies, which make them appear as “quasioptical”
phonons in the low phonon energy range. Although not
shown in the figure, other polarizations of the confined
acoustic phonons manifest similar features.19,20 We have cal-
culated the confined acoustic phonons of all polarizations in
order to include them in the calculation of the electron-
phonon scattering. Despite the fact that the elastic continuum
approximation does not give accurate results for the large
values of the phonon wave vector, it is suitable for our pur-
poses since the phonons, which interact with the electrons,
are predominantly near the zone center owing to the restric-
tions of the momentum and energy conservation laws.3

After calculating the dispersion for all confined acoustic
phonon branches we obtained the electron mobility from
Eqs. �1� and �2�. The results of calculations for the tempera-
ture range from T=80 to 100 K are presented in Fig. 7. The
oscillations of the mobility, limited by the confined acoustic
phonons, are shifted to the region of the large channel thick-
ness in comparison with the mobility limited by the optical
phonons. The latter is explained by the substantial difference
between the energies of the optical and confined acoustic
phonons in the considered heterostructures. The smoothing
of the mobility oscillations, limited by the confined acoustic
phonons, i.e., smaller amplitudes of the maxima and minima
in comparison with the case of mobility limited predomi-
nantly by the optical phonons, is explained by the wider
energy dispersion of the acoustic phonons. For comparison,
we also show the mobility obtained by taking into account
the electron ground subband only �dash-dotted curves�. For
the thin conduction channels �d�10 nm� the curves obtained
in the multiband and the single-band approaches coincide,

while for the relatively thick channels �d�10� the “single-
band” mobility continues a monotonic increase and becomes
much larger than the more accurate “multiband” mobility.
Thus, for an accurate estimate of the electron mobility lim-
ited by the acoustic phonons, it is important to take into
consideration the excited electron subbands.

IV. CONCLUSIONS

We studied theoretically the electron mobility in
AlN/GaN/AlN heterostructures with the nanometer thick-
ness GaN conduction channels. It was found that the low-
field electron mobility limited by the polar optical and con-
fined acoustic phonons manifests oscillatory behaviors as a
function of the channel thickness. The oscillations appear in
the wide range of temperatures and carrier densities. It was
shown that the specific mobility dependence is defined by the
intersubband electronic transitions, which play an important
role when the energy separation between one of the size-
quantized excited electron subbands and the Fermi energy
becomes comparable to the optical or confined acoustic pho-
non energy. The described mechanism, which is rather gen-
eral and pertinent to other material systems, can be used for
fine tuning the confined electron and phonon states to
achieve performance enhancement of the low-power nanos-
cale electronic devices and improve their thermal manage-
ment. It may also help in mitigating the self-heating effects,
which present a major problem for GaN transistor
technology.26
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